
CSSE 220

Console Input



Outline

• Finish up with biggest fan

• Console Input

• Unit Testing

• Prep for Exam 1 paper part

• Maybe some time to work on Scene



CONSOLE INPUT WITH 
JAVA.UTIL.SCANNER

Reading keyboard input from the console



Console input with Scanner

• Creating a Scanner object
– import java.util.Scanner;
– Scanner inputScanner = new Scanner(System.in);

• Defines methods to read from keyboard
– inputScanner.nextInt();
– inputScanner.nextDouble();
– inputScanner.nextLine();
– inputScanner.next();

• Exercise: Look at 
UnitTesting/src/ConsoleWorker.java. 
Add missing methods to read from console

Q1



Unit Testing

• Idea: Test “small pieces” of larger program

– Do the expected values match what you ACTUALLY 
get?

• How to test in this manner?

– Could make a main method that calls all the 
methods

– JUnit!

• Creating a Tester JUnit class

Q2



Why Unit Testing?

• There are several goals of unit testing:

– Make sure your code works (as specified!)

– Keep it working

– Confirm understanding of the specification

– Confirm pieces of code in isolation

– Provide Documentation

Q3



Unit Tests (from the book)

1. Construct one or more objects of the class 
that is being tested

2. Invoke one or more methods

3. Print out one or more results

4. Print the expected results

5. Do 3 and 4 match?

(Pages 102-103 in book)



Why JUnit instead of Book’s Version?

• Provides a Framework

– Framework: Collection of classes to be used by 
another program

• Provides easy-to-read output in Eclipse

• Prints require you to analyze all lines

– What if it scrolls off the page?

– What if it’s only 1 character different?

Q3



What are good unit tests?

• Unit tests should be small pieces that test:

1. The most common cases

2. The edge cases (minimum, maximum, switching 
from positive to negative, etc.)

3. All specific/special cases (e.g., when 0 or null the 
behavior is different than for any other value)

4. When you find and fix a bug, you should have a unit 
test for this so it doesn’t ever happen again. Fix 
things once and for all!

5. Any overly complex code that 1-4 above don’t cover

Q5



Unit Testing

• Use “assert” to make sure results match

• Let’s look at BadFrac.java and BadFracTest.java

– Let’s make some unit tests and figure out why this 
project has been yielding some strange results

Q12 -

13



EXAM 1 REVIEW - WRITTEN
Review for written portion of Exam 1


